Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexakis(dimethylformamide- κ O)manganese(II) $\boldsymbol{\mu}$-oxido-bis[trichloridoferrate(III)]

Eduard N. Chygorin, ${ }^{\text {a }}$ Svitlana R. Petrusenko, ${ }^{\text {a }}$ Volodymyr N. Kokozay, ${ }^{\text {a }}$ Yuri O. Smal, ${ }^{\text {a }}$ Irina V. Omelchenko ${ }^{\text {b }}$ and Oleg V. Shishkin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., Kyiv 01601, Ukraine, and ${ }^{\mathbf{b}}$ STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
Correspondence e-mail: chigorin@mail.univ.kiev.ua

Received 5 September 2011; accepted 9 October 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.092$; data-to-parameter ratio $=23.9$.

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{6}\right]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right]$, was obtained unintentionally as a product of an attempted synthesis of heterometallic complexes with Schiff base ligands using manganese powder and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as starting materials. In the $\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]^{2-}$ anion, the O atom and the Fe atom occupy positions with site symmetry $\overline{3}$ and 3 , respectively, resulting in a linear $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ angle and a staggered conformation. The octahedrally surrounded cation (site symmetry $\overline{3}$) and the $\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right]^{2-}$ anion are alternately stacked along [001].

Related literature

For structures including $\left[\mathrm{Mn}(\mathrm{dmf})_{6}\right]^{2+}$ cations, see: Khutornoi et al. (2002). For stuctures including $\left[\mathrm{Fe}(\mathrm{dmf})_{6}\right]^{2+}$, see: Albanati et al. (2007); Baumgartner (1986); Li et al. (2007a,b); Lode \& Krautscheid (2000); Müller et al. (1989a,b); Qiutian et al. (1983); Silva et al. (2008); Young et al. (1989). For the isostructural complex $\left[\mathrm{Mg}(\mathrm{dmf})_{6}\right]\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]$, see: Juang et al. (1984). For bond-valence-sum calculations, see: Brown \& Altermatt (1985). For related direct syntheses, see: Garnovskii et al. (1999).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{6}\right]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right] \quad Z=3$
$M_{r}=833.92$
Trigonal, $R \overline{3}$
Mo $K \alpha$ radiation
$a=14.0171$ (8) \AA
$\mu=1.68 \mathrm{~mm}^{-1}$
$c=15.3966(14) \AA$
$T=173 \mathrm{~K}$
$V=2619.8(3) \AA^{3}$
$0.60 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur/ Sapphire3 diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\text {min }}=0.557, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.98$
1624 reflections
68 parameters

> 16066 measured reflections 1624 independent reflections 1323 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.067$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.1736(15)$	$\mathrm{Fe} 1-\mathrm{Cl} 1$	$2.2330(6)$
$\mathrm{Fe} 1-\mathrm{O} 1 S$	$1.7758(5)$		

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: $X P$ in $S H E L X T L$; software used to prepare material for publication: publCIF (Westrip, 2010).

This work was partially supported by the State Fund for Fundamental Research of Ukraine (Project 28.3/017).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2531).

References

Albanati, A., Calderazzo, F., Marchetti, F., Mason, S. A., Melai, B., Pampaloni, G. \& Rizatto, S. (2007). Inorg. Chem. Commun. 10, 902-904.

Baumgartner, O. (1986). Z. Kristallogr. 174, 253-263.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.

metal-organic compounds

Garnovskii, A. D., Kharisov, B. I., Skopenko, V. V., Blanco Jerez, L. M., Kokozay, V. N., Kuzharov, A. S., Garnovskii, D. A., Vassilyeva, O. Yu., Burlov, A. S. \& Pavlenko, V. A. (1999). Direct Synthesis of Coordination and Organometallic Compounds. Amsterdam: Elsevier
Juang, L., Jiang, F. \& Lu, J. (1984). Hиaxue Tongbao, 3, 14-19.
Khutornoi, V. A., Naumov, N. G., Mironov, Yu. V., Oeckler, O., Simon, A. \& Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 193-201.
Li, Y., Zhang, Z.-X., Li, K.-C., Song, W.-D., Cui, X.-B. \& Pan, L.-Y. (2007a). J. Mol. Struct. 843, 102-106.
Li, Y., Zhang, Z.-X., Li, K.-C., Xu, J.-Q., Song, W.-D. \& Pan, L.-Y. (2007b). J. Mol. Struct. 833, 8-12.
Lode, C. \& Krautscheid, H. (2000). Z. Anorg. Allg. Chem. 626, 326-331.
Müller, A., Bogge, H., Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Romer, C., Romer, M., Dornfeld, H.,

Wienboker, U., Hellmann, W. \& Zimmermann, M. (1989a). Monatsh. Chem. 120, 367-391.
Müller, A., Schaladerbeck, N. H., Krickemeyer, E., Bogge, H., Schmitz, K., Bill, E. \& Trautwein, A. X. (1989b). Z. Anorg. Allg. Chem. 570, 7-36.
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Qiutian, L., Liangren, H., Beisheng, K. \& Jiaxi, L. (1983). Chin. J. Struct. Chem. 2, 225-229.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silva, R. M., Gwengo, C., Lindeman, S. V., Smith, M. D., Long, G. J., Grandjean, F. \& Gardinier, J. R. (2008). Inorg. Chem. 47, 7233-7242.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Young, A. C. M., Walters, M. A. \& Dewan, J. C. (1989). Acta Cryst. C45, 17331736.

supplementary materials

Hexakis(dimethylformamide- κ O)manganese(II) $\mu_{\text {-oxido-bis[trichloridoferrate(III)] }}$

E. N. Chygorin, S. R. Petrusenko, V. N. Kokozay, Y. O. Smal, I. V. Omelchenko and O. V. Shishkin

Comment

Continuing our research on direct synthesis of bimetallic complexes with Schiff base ligands, i.e. one-pot synthesis with the use of metal powders or their oxides as starting materials (Garnovskii et al., 1999), we present here a new $\mathrm{Mn}^{\mathrm{II}} / \mathrm{Fe}^{\text {III }}$ complex, which was obtained as a by-product during the investigation of the system: $\mathrm{Mn}^{0}-\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ - salicylic aldehyde - glycine - $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{dmf}$ (dimethylformamide).

The crystal structure of the title complex, (I), is shown in Fig. 1. Six dmf molecules coordinate to the Mn^{2+} ion forming the almost regular octahedral complex cation $\left[\mathrm{Mn}(\mathrm{dmf})_{6}\right]^{2+}[$ site symmetry $\overline{3}$; Mn1—O1 distances of 2.1736 (15) \AA and $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1$ bond angles of 87.49 (6), 92.51 (6) and 180°]. Since the neighbouring elements Mn and Fe are difficult to distinguish by X-ray methods, a comparison of $\mathrm{Mn}^{\mathrm{II}}-\mathrm{O}$ and $\mathrm{Fe}^{\mathrm{II}}-\mathrm{O}$ bond lengths can be useful in the assignment of the correct metal to this polyhedron. The observed metal- $\mathrm{O}_{\mathrm{dmf}}$ distances are in good agreement with those in $\left[\mathrm{Mn}(\mathrm{dmf})_{6}\right]\left[\mathrm{Mo}_{6} \mathrm{Br}_{8}(\mathrm{NCS})_{6}\right][2.152 \AA$ (Khutornoi et al., 2002)]. An additional argument for Mn in the cation as the correct metal, but not its Fe analogue, is the analysis of crystallographic data for 10 structures containing [Fe(dmf) $]^{2+}$ (Albanati et al., 2007; Baumgartner, 1986; Li et al., 2007a,b; Lode \& Krautscheid, 2000; Müller et al., 1989a,b; Qiutian et al., 1983; Silva et al., 2008; Young et al., 1989) where Fe-O bond lengths in the range of $1.99-2.16 \AA$ with an average value of $2.11 \AA$ are found. Moreover, no $\mathrm{Fe}^{\mathrm{II}}$ complexes with a regular octahedral dmf environment have been found.

The $\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]^{2-}$ anion possesses $D_{3 d}$ geometry with Fe and O atoms in special positions (3 and 3, respectively) that force the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ angle to be linear and the anion to adopt a staggered conformation (Fig. 2). The Fe^{3+} atom has a distorted tetrahedral coordination with an Fe1-O1S distances of 1.7758 (5) \AA, an $\mathrm{Fe} 1-\mathrm{Cl} 1$ distance of 2.2330 (6) \AA, and bond angles of 106.348 (19) and $112.438(17)^{\circ}$ for $\mathrm{Cl} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$ and $\mathrm{Cl} 1-\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{~S}$, respectively. The oxidation states (+II) and (+III) for hexa-coordinate Mn and four-coordinate Fe atoms are supported by bond-valence sum calculations [1.914 for Mn^{2+} and 3.099 for Fe^{3+} (Brown \& Altermatt, 1985)].

The $\left[\mathrm{Mn}(\mathrm{dmf})_{6}\right]^{2+}$ cations and $\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]^{2-}$ anions are arranged in such a way that the cations and anions are arranged alternatingly along the [001] direction (Fig. 3).

The described complex (I) can be supposed as isostructural to $\left[\mathrm{Mg}(\mathrm{dmf})_{6}\right]\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]$ (Juang et al., 1984) but interestingly the volume of the unit cell in case of the manganese complex is ca $200 \AA^{3}$ less than that of the magnesium complex.

Experimental

Salicylic aldehyde ($0.31 \mathrm{~g}, 2.5 \mathrm{mmol}$), glycine ($0.19 \mathrm{~g}, 2.5 \mathrm{mmol}$) and triethylamine ($0.35 \mathrm{mmol}, 2.5 \mathrm{mmol}$) were dissolved in dimethylformamide (dmf; 25 ml) in this order, and stirred at $323-333 \mathrm{~K}(10 \mathrm{~min})$. Then, manganese powder (0.14
g, 2.5 mmol$)$ and $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.68 \mathrm{~g}, 2.5 \mathrm{mmol})$ were added to the hot yellow solution with stirring for 3 h , until total dissolution of manganese was observed. The resulting solution was filtered and subsequently pale pink crystals suitable for X-ray crystallography were separated after eight days at successive addition of a $\operatorname{Pr}^{i} \mathrm{OH}$. Yield: $0.23 \mathrm{~g}, 21.5 \%$ (per iron). Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{42} \mathrm{MnFe}_{2} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Cl}_{6}(\mathrm{Mr}=833.92)$. Calcd: C, 25.93; N, 10.08; H, 5.08; Fe, 13.39; Mn , 6.59. Found: C, 26.1; N, 10.0; H, 5.0; Fe, 13.3; Mn, 6.3. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3344(\mathrm{br}), 2924(m), 1629(m), 1572(\mathrm{w}), 1557(\mathrm{w})$, $1535(\mathrm{w}), 1521(\mathrm{w}), 1470(\mathrm{w}), 1412(\mathrm{br}), 1312(\mathrm{w}), 1580(\mathrm{w}), 1174(\mathrm{w}), 1154(\mathrm{w}), 1041(\mathrm{w}), 952(\mathrm{w}), 851(\mathrm{w}), 689(\mathrm{~s}), 482(\mathrm{w})$, $443(\mathrm{w})$. The compound is sparingly soluble in dimethylsulfoxide (dmso), dmf, and $\mathrm{H}_{2} \mathrm{O}$. In the IR spectrum of (I), the band corresponding to $v(\mathrm{CO})$ in dmf is shifted to the region of longer wavelenghts $\left(1629 \mathrm{~cm}^{-1}\right)$ relative to this band in the spectrum of noncoordinating $\operatorname{dmf}\left(1675 \mathrm{~cm}^{-1}\right)$.

Refinement

The carbonyl H atom was found from a difference Fourier map and was refined freely. Methyl H atoms were allowed to ride on their attached atoms with $\mathrm{C}-\mathrm{H}=0.98(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$. The highest remaining difference Fourier peak is located $0.87 \AA$ from atom O1S.

Figures

Fig. 1. Parts of the structure of (I), with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms were omitted for clarity.

Fig. 2. The crystal packing of (I) showing a staggerded conformation of the $\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]^{2-}$ anion. Colour code as in Fig. 1; hydrogen atoms were omitted for clarity.

Hexakis(dimethylformamide-кO)manganese(II) μ-oxido-bis[trichloridoferrate(III)]

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{6}\right]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right]$
$M_{r}=833.92$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$D_{\mathrm{x}}=1.586 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2653 reflections
$\theta=2.9-32.5^{\circ}$
$a=14.0171$ (8) \AA
$c=15.3966(14) \AA$
$V=2619.8(3) \AA^{3}$
$Z=3$
$F(000)=1281$
$\mu=1.68 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, red
$0.60 \times 0.40 \times 0.40 \mathrm{~mm}$

1624 independent reflections
1323 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-19 \rightarrow 19$
$k=-19 \rightarrow 15$
$l=-20 \rightarrow 18$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.98$
1624 reflections
68 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0428 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Mn1	0.0000	0.0000	0.5000	$0.02020(19)$
N1	$0.23962(14)$	$-0.02345(15)$	$0.65588(11)$	$0.0223(4)$
Fe1	0.0000	0.0000	$0.88467(3)$	$0.02113(16)$
O1	$0.08798(13)$	$-0.06054(12)$	$0.57785(10)$	$0.0262(4)$
Cl1	$0.03397(5)$	$-0.12729(4)$	$0.82931(3)$	$0.02609(16)$
C1	$0.15838(18)$	$-0.00668(18)$	$0.63362(15)$	$0.0232(4)$
H1	$0.1622(18)$	$0.0567(19)$	$0.6623(13)$	$0.015(6)^{*}$
O1S	0.0000	0.0000	1.0000	$0.0282(8)$
C2	$0.2521(2)$	$-0.1115(2)$	$0.61800(16)$	$0.0318(5)$
H2A	0.1939	-0.1512	0.5750	0.048^{*}
H2B	0.2467	-0.1626	0.6638	0.048^{*}
H2C	0.3242	-0.0802	0.5897	0.048^{*}
C3	$0.3184(2)$	$0.0425(2)$	$0.72297(17)$	$0.0347(6)$
H3A	0.3143	-0.0055	0.7709	0.052^{*}
H3B	0.3010	0.0977	0.7446	0.052^{*}
H3C	0.3929	0.0795	0.6985	0.052^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0176(2)$	$0.0176(2)$	$0.0254(4)$	$0.00880(12)$	0.000	0.000
N1	$0.0200(9)$	$0.0211(9)$	$0.0259(9)$	$0.0104(7)$	$-0.0009(7)$	$0.0000(7)$
Fe1	$0.02076(19)$	$0.02076(19)$	$0.0219(3)$	$0.01038(10)$	0.000	0.000
O1	$0.0238(8)$	$0.0209(8)$	$0.0340(9)$	$0.0112(7)$	$-0.0040(6)$	$0.0015(6)$
C11	$0.0271(3)$	$0.0233(3)$	$0.0303(3)$	$0.0145(2)$	$0.0021(2)$	$0.00083(19)$
C1	$0.0209(11)$	$0.0185(10)$	$0.0296(11)$	$0.0093(9)$	$0.0026(8)$	$0.0041(8)$
O1S	$0.0274(13)$	$0.0274(13)$	$0.030(2)$	$0.0137(6)$	0.000	0.000
C2	$0.0373(14)$	$0.0370(13)$	$0.0331(13)$	$0.0278(12)$	$-0.0034(10)$	$-0.0044(10)$
C3	$0.0339(13)$	$0.0269(13)$	$0.0446(14)$	$0.0162(11)$	$-0.0151(11)$	$-0.0065(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$	2.1736 (15)
$\mathrm{Mn} 1-\mathrm{Ol}{ }^{\text {ii }}$	2.1736 (15)
$\mathrm{Mn} 1-\mathrm{O} 1$	2.1736 (15)
Mn1-O1 ${ }^{\text {iii }}$	2.1736 (15)
Mn - $\mathrm{Ol}^{\text {iv }}$	2.1736 (15)
$\mathrm{Mn} 1-\mathrm{Ol}^{\text {v }}$	2.1736 (15)
N1-C1	1.318 (3)
N1-C2	1.453 (3)
N1-C3	1.456 (3)
Fel-O1S	1.7758 (5)
$\mathrm{Fe} 1-\mathrm{Cl1}{ }^{\text {ii }}$	2.2330 (6)

$\mathrm{Fe} 1-\mathrm{Cl1}$	$2.2330(6)$
$\mathrm{Fe} 1-\mathrm{Cl1}{ }^{\text {v }}$	$2.2330(6)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.239(3)$
$\mathrm{C} 1-\mathrm{H} 1$	$0.97(2)$
$\mathrm{O} 1 \mathrm{~S}-\mathrm{Fel}^{\mathrm{vi}}$	$1.7758(5)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800

sup-4

supplementary materials

O1 ${ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {ii }}$	180.00 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	87.49 (6)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 1$	92.51 (6)
$\mathrm{O} 1^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iii }}$	92.51 (6)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iii }}$	87.49 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iii }}$	180.00 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mnl}-\mathrm{Ol}^{\text {iv }}$	92.51 (6)
$\mathrm{O1}{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	87.49 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	87.49 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	92.51 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {v }}$	87.49 (6)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {v }}$	92.51 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O1}^{\mathrm{v}}$	92.51 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	87.49 (6)
$\mathrm{O1}{ }^{\text {iv }}-\mathrm{Mn} 1-\mathrm{Ol}^{\text {v }}$	180.00 (7)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	121.94 (18)
C1-N1-C3	121.34 (19)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	116.65 (18)
$\mathrm{O} 1 \mathrm{~S}-\mathrm{Fe} 1-\mathrm{Cl} 1^{\text {ii }}$	112.438 (17)
O1S-Fe1-Cl1	112.438 (17)
$\mathrm{Cl1} 1{ }^{\text {ii }}-\mathrm{Fe} 1-\mathrm{Cl} 1$	106.348 (19)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1$	169.64 (18)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Mn1}-\mathrm{O} 1-\mathrm{Cl}$	-10.36 (18)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1$	77.01 (14)
$\mathrm{O} 1{ }^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1$	-102.99 (14)

$\mathrm{O} 1 \mathrm{~S}-\mathrm{Fe} 1-\mathrm{Cl1} 1^{\mathrm{v}}$	$112.438(17)$
$\mathrm{C} 11^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{Cl1}^{\mathrm{v}}$	$106.348(19)$
$\mathrm{C} 11-\mathrm{Fe} 1-\mathrm{Cl}^{\mathrm{v}}$	$106.348(19)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mn} 1$	$125.35(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$124.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	$122.4(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	$112.8(13)$
$\mathrm{Fe} 1^{\text {vi }}-\mathrm{O} 1 \mathrm{~S}-\mathrm{Fe} 1$	180.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-152.23(16)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-2.2(3)$
	$-179.2(2)$

Symmetry codes: (i) $y,-x+y,-z+1$; (ii) $-y, x-y, z$; (iii) $-x,-y,-z+1$; (iv) $x-y, x,-z+1$; (v) $-x+y,-x, z$; (vi) $-x,-y,-z+2$.
supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

